При закреплении навыков счета и отсчета важно наряду со счетом отдельных предметов упражнять детей в счете групп, состоящих из однородных предметов. Дошкольникам предъявляют группу, составленную из равных количеств однородных предметов: матрешек, кубиков, конусов, чашек и т. п. — или моделей геометрических фигур: треугольников, кругов и т. п. Цветные изображения предметов или геометрических фигур могут размещаться на фланелеграфе. Задают вопрос: «Сколько групп...? Сколько... в каждой группе? Сколько всего...?» Отвечая на последний вопрос, дети пересчитывают предметы по одному. Оживление вносят игровые моменты. Например, воспитатель размещает на фланелеграфе картинки с изображением самолетов и спрашивает: «Сколько звеньев самолетов? Сколько самолетов в каждом звене? Сколько рядов самолетов? Сколько всего самолетов?» Затем дети закрывают глаза, а воспитатель меняет расположение игрушек. Дети открывают глаза, отгадывают, что изменилось, и считают, сколько теперь звеньев самолетов, по скольку самолетов в каждом звене и т. п. Позднее детям предлагают отсчитать определенное количество предметов и разложить их группами: по 2, по 3, по 4, по 5. Выясняют, сколько групп получилось и по скольку предметов в каждой группе. Вначале можно использовать сюжетный иллюстративный материал, например разделить 8 рыбок в 2 (4) аквариума, а затем абстрактный — геометрические фигуры. После того как дети выполнят задания и расскажут, сколько получилось групп и по скольку предметов в каждой, им предлагают подумать, сколько станет групп, если в каждой группе будет не по 3, а по 2 предмета или на 1 предмет больше, или, наоборот, сколько будет предметов в каждой группе, если групп станет на 1 больше (меньше) или 4 группы, вместо 3, 2 вместо 3 и т. п. Нельзя допускать, чтобы дети действовали на авось. Надо предлагать им сначала подумать и самим догадаться, как перестроить группы, не разрушая их, а потом проверить, не ошиблись ли они. Например, распределили 6 кружков на 2 группы, причем в каждой группе по 3 кружка. Надо сделать так, чтобы стало 3 группы кружков. Для этого ребята должны взять по 1 кружку из каждой группы и составить новую. Каждый раз устанавливают связь между количеством групп и количеством предметов в группе. Дети видят: увеличивают количество групп — уменьшают количество предметов в каждой из них, уменьшают количество групп — увеличивают в каждой из них количество предметов (при условии, что общее число предметов одно и то же). Упражнениям в счете групп предметов отводят 6—7 занятий. Они имеют существенное значение для развития понятия числа. В качестве единицы счета теперь наряду с отдельными предметами выступают группы предметов. Таким образом, единица отвлекается от отдельностей.
ДЕЛЕНИЕ ЦЕЛОГО НА ЧАСТИ
Дальнейшему развитию понятия о числе служат упражнения в делении предметов на равные части. Дети учатся видеть части в целом предмете, выявляют отношение целого и части. Делению предметов на равные части отводят б—7 (последовательно проводимых) занятий, а затем до конца года к этому периодически возвращаются. На первом занятии создают ситуации, при которых возникает необходимость разделить предмет на- 2 равные части, например разделить угощение между 2 куклами или 2 детьми (гостями), помочь 2 жадным медвежатам разделить сыр и т. п. Воспитатель показывает, как надо делить предметы на 2 равные части, т. е. пополам, подчеркивает, что он точно складывает и разрезает предмет посередине, потом сравнивает полученные части, накладывая одну на другую или прикладывая одну к другой. Дети считают части, убеждаются, что они равные. Воспитатель говорит, что любую из 2 равных частей обычно называют половиной. Следующий предмет воспитатель намеренно делит на 2 неравные части и спрашивает: «Можно ли такую часть назвать половиной? Почему нет?» Дети видят, что предметы могут быть разделены как на равные, так и на неравные части. Половиной 1 из 2 частей можно назвать лишь тогда, когда части равны.
Постепенно дети убеждаются в том, как важно точно складывать, разрезать предметы, чтобы получились равные части. Выполнив действие, они проверяют (наложением и приложением), равные ли получились части, считают их и, соединив вместе, получают целый предмет, обводят его контур и части рукой, сравнивают размер целого и части. На втором занятии воспитатель расширяет круг предметов, которые дети делят пополам. Можно использовать крупу, воду. Их распределяют поровну в 2 прозрачных стакана одинаковых размеров. На третьем занятии показывают способы деления предметов на 4 равные части, т. е. пополам и еще раз пополам. Устанавливают отношения между целым. и частью: часть меньше целого, целое больше части. Если в подготовительную к школе группу поступило много новых детей целесообразно начать с деления предметов на части путем складывания. Дети получают по 2 предмета одинаковых размеров, в чем они убеждаются, накладывая 1 предмет на другой. Они делят 1 предмет на 2 равные части, другой — на 4. Соединив части вместе, они получают целый предмет, пересчитывают части, показывают 1 из 2 частей, 2 из 2 частей, соответственно 1 (2, 3, 4) из 4 равных частей. Сравнивают размер 1 части и целого. Аналогичным образом на следующем занятии показывают взаимосвязи между разными частями единого целого. Дети получают по 3—4 листа бумаги одинакового размера, первый кладут перед собой, второй делят на 2 равные части, а третий — на 4 (можно четвертый лист разделить на 8 равных частей). Соединяя части (как бы оставляя листы целыми), дети раскладывают их один под другим, показывают 1 из 2 частей, 1 из 4 частей, сравнивают размер 1/2 и 1/4 части и их количество. Что меньше: целый лист или половина? Что больше: половина или 1 из 4 частей, 1/4? Какая часть меньше всех? Почему? И т. п. Полезно установить связь между количеством действий разрезания и количеством получившихся частей. Например, воспитатель спрашивает: «Сколько раз надо сложить квадрат пополам, чтобы получились 2 равные части? А 4 части?» Для обобщения знаний можно использовать схемы деления того или иного предмета на равные части (яблока, круга, квадрата и пр.). Рассматривая с детьми схему, воспитатель спрашивает: «На сколько равных частей сначала разделили яблоко? Сколько получилось таких частей? На сколько равных частей потом разделили яблоко? Сколько получилось частей? Что больше и что меньше: половина или целое яблоко? 2 половины или целое яблоко? 1 из 4 частей (1/4) или половина (1/2)?» И т. д. Такие упражнения дети обычно воспринимают как игру и с удовольствием отвечают на вопросы. На последующих занятиях проводят упражнения в делении геометрических фигур на 2, 4, 8 частей и в составлении целых фигур из частей, например: «Как надо сложить и разрезать квадрат, чтобы получились 2 равных прямоугольника? Чтобы получились 2 равных треугольника?» (Надо согнуть квадрат стороной к стороне или сложить уголок с уголком.) Дети рассказывают о том, какие фигуры и как они разделили и что получилось в результате деления, какой формы части, сколько их. Проводят и специальные упражнения в составлении фигур из частей: «Сколько кругов можно сложить из 4 полукругов?» Можно показать части фигур: «Это 1 из 4 (1 из 2, 4 из 8) частей квадрата. Догадайтесь, сколько было квадратов. Составьте их». Полезно побуждать детей находить наиболее удобные (рациональные) способы деления предметов на части с учетом их размера, формы, пропорций. Например, надо сравнить, как легче разделить на 4 части узкую полоску (ленту) и квадрат (кусок ткани). Дети решают, что узкую полоску удобнее складывать по длине пополам и еще раз пополам, а квадрат — последовательно сложить противоположными сторонами. На одном из последних занятий по этой теме целесообразно сравнить результаты деления на равные части предметов разных размеров. Детям предъявляют 2 предмета контрастных размеров, например большой и маленький круг или квадрат. Воспитатель делит фигуры на 2 (4) равные части, берет по 1 из частей каждой фигуры и просит детей сказать, как можно назвать эти части («Половина, 1 из 2 частей, 1/2».) «Это половина и это половина. Объясните, почему они разных размеров». Помогая детям, воспитатель показывает запасные фигуры соответствующего размера. Делает вывод: половина большого круга больше половины маленького, а половина маленького круга меньше половины большого круга. Предметы были разных размеров, и их части тоже разных размеров. Целесообразно здесь же противопоставить результаты деления на части предметов, равных по величине. При проведении упражнений в делении предметов на равные части воспитатель постоянно следит за тем, чтобы дети точно выполняли действия, проверяли равенство частей, пользуясь приемами наложения и приложения, а также измерения условной меркой, приучает детей употреблять в речи следующие слова и выражения: разделить на равные части, целое, половина, пополам, одна из двух частей, одна из четырех частей, а несколько позднее — одна вторая, одна четвертая. Последние выражения не следует специально заучивать, дети постепенно их запоминают. Каждый раз ребята пересчитывают части, а соединяя их вместе, получают 1 целый предмет, устанавливают отношение между целым и частью. В итоге ряда занятий можно задать детям вопросы, позволяющие обобщить знания: «Сколько раз надо сложить круг, чтобы разделить его на 2 (4, 8) равные части? Если квадрат сложить 1 (2, 3) раз пополам, сколько частей получится? Если я вас прошу дать мне половину груши, на сколько частей вы ее разделите? А если попрошу 1/4? Сколько таких частей в целой груше? На сколько частей я разделила целое, если это 1 часть из 4 (из 2)? Если мы разделим пополам большой предмет и маленький, половина какого предмета будет больше? А меньше? Почему?»
Деление на части позволит показать детям возможность дробления предметов на равные доли, наглядно выявить отношение целого и части, и, таким образом, создается условие для осознания детьми процесса измерения величин. При измерении предмет как бы дробится на части, сумма которых и характеризует его величину. После того как дети овладевают приемами измерения, им можно предложить разделить палку, рейку, дощечку, нарисованный на доске прямоугольник и пр. на 2; 4, 8 равных частей. Ребята видят, что данные предметы не сгибаются, усвоенные способы деления не подходят. Как быть? Воспитатель не спешит с подсказкой. Он раскладывает перед детьми предметы, которыми можно воспользоваться в качестве мерки. Здесь детям и помогает понимание взаимосвязи между размером предметов и размером их соответствующих частей. 1—2 наводящих вопроса и дети догадываются, что надо выбрать подходящую мерку, отмерить кусок, равный длине предмета, разделить мерку (сложить) на соответствующее количество частей и затем отмерить эти части на предмете, сделать отметки карандашом, мелком и др.
Полезно поупражнять детей в делении геометрических фигур, нарисованных на бумаге в клетку. Дети рисуют фигуры заданного размера, а затем по указанию воспитателя делят их на 2, 4 равные части, измеряя по клеткам. По указанию воспитателя они проводят отрезки длиной от 2 до 10 клеток сверху вниз или слева направо и делят их на части, равные длине 1, 2, 3, 4, 5 клеток. Устанавливают связи между величиной мерки и количеством получившихся частей: «На сколько частей разделится отрезок, если каждая часть будет равна 2 клеткам? Если мы разделим отрезок на 3 равные части, чему будет равна 1 часть?» Упражнения в делении предметов на равные части позволяют перейти к обучению измерению, а умение измерять дает возможность делить на части самые разнообразные предметы.
СОСТАВ ЧИСЛА ИЗ ЕДИНИЦ
У детей подготовительной к школе группы закрепляют знания о составе из единиц чисел первого пятка, они изучают состав из единиц чисел второго пятка, учатся устанавливать отношение между единицей и числом (6 — это 1, 1, 1, 1, 1 и еще 1). Как и в старшей группе, вначале показ состава числа из единиц осуществляют на конкретном материале. Используют приемы: составление группы из разных предметов или игрушек; составление группы из однородных предметов, отличающихся качественными признаками; составление группы из картинок, на которых изображены разные предметы, объединенные родовым понятием (1 стул, 1 табуретка, 1 кресло, 1 секретер, 1 шкаф, 1 буфет — всего 6 предметов мебели). В работе с детьми 6—7 лет используют и новые приемы: зарисовка определенного числа разных игрушек или геометрических фигур. («Я нарисовал всего 5 фигур: 1 круг, 1 фигуру овальной формы, 1 квадрат, 1 прямоугольник, 1 треугольник».) Распределение предметов по группам по одному из признаков, выделение каждой группы как единицы счета и определение общего количества групп. («Всего 4 группы флажков: 1 группа голубых флажков, еще 1 — розовых, еще 1 — желтых и еще 1 — синих».) Дети скорее поймут количественное значение чисел, если параллельно будут изучаться состав 2—3 чисел и чередоваться упражнения в составлении соответствующих количественных групп. Этому способствует организация действий детей одновременно с разным раздаточным материалом (так, у одних, например, группа составлена из 7 предметов мебели, у других — из 7 предметов посуды, у третьих — из 7 разновидностей овощей и т. д.). Выполнив, задание, дети каждый раз рассказывают, как составили группу, по скольку у них разных предметов и сколько их всего. Шестилетним детям можно одновременно называть
2 числа и давать задания составить сразу 2 группы предметов, например на верхней полоске карточки составить группу из 4 разных геометрических фигур, а на нижней — из 5. Воспитатель обращает внимание детей не только на количественный состав числа, из единиц, но и на отношения между числами (на сколько одно число больше или меньше другого). Широко используют словесные упражнения без опоры на наглядный материал: «К белочке в гости пришли заяц, еж и медвежонок. Сколько гостей оказалось в домике у белочки? Сколько всего зверей в домике у белочки? По скольку оказалось разных зверей?», «В команду космического корабля вошли командир корабля, бортинженер и врач. Сколько человек вошло в команду космического корабля?» Постепенно дети начинают понимать, что каждое число содержит определенное количество единиц, они могут отвечать на вопросы: «Сколько игрушек ты возьмешь, если я назову число 7? Почему?» — а позднее и на такой вопрос: «Сколько единиц содержится в числе 7?» Работу по этой теме проводят на 6—7 специальных занятиях. На первых 3 из них изучают материал в первой части, а на последующих — во второй. Однако к теме надо периодически возвращаться в течение всего учебного года, и особенно тогда, когда дети будут осваивать приемы вычисления присчитыванием по 1.
Л.С.Метлина, "Математика в детском саду", пособие для воспитателя детского сада, М., 1984 г. OCR Detskiysad.Ru
Популярные статьи сайта из раздела «Сны и магия»
.
Магия приворота
Приворот является магическим воздействием на человека помимо его воли. Принято различать два вида приворота – любовный и сексуальный. Чем же они отличаются между собой?
По данным статистики, наши соотечественницы ежегодно тратят баснословные суммы денег на экстрасенсов, гадалок. Воистину, вера в силу слова огромна. Но оправдана ли она?
Порча насылается на человека намеренно, при этом считается, что она действует на биоэнергетику жертвы. Наиболее уязвимыми являются дети, беременные и кормящие женщины.
Испокон веков люди пытались приворожить любимого человека и делали это с помощью магии. Существуют готовые рецепты приворотов, но надежнее обратиться к магу.
Достаточно ясные образы из сна производят неизгладимое впечатление на проснувшегося человека. Если через какое-то время события во сне воплощаются наяву, то люди убеждаются в том, что данный сон был вещим. Вещие сны отличаются от обычных тем, что они, за редким исключением, имеют прямое значение. Вещий сон всегда яркий, запоминающийся...
Существует стойкое убеждение, что сны про умерших людей не относятся к жанру ужасов, а, напротив, часто являются вещими снами. Так, например, стоит прислушиваться к словам покойников, потому что все они как правило являются прямыми и правдивыми, в отличие от иносказаний, которые произносят другие персонажи наших сновидений...
Если приснился какой-то плохой сон, то он запоминается почти всем и не выходит из головы длительное время. Часто человека пугает даже не столько само содержимое сновидения, а его последствия, ведь большинство из нас верит, что сны мы видим совсем не напрасно. Как выяснили ученые, плохой сон чаще всего снится человеку уже под самое утро...
Согласно Миллеру, сны, в которых снятся кошки – знак, предвещающий неудачу. Кроме случаев, когда кошку удается убить или прогнать. Если кошка нападает на сновидца, то это означает...
Как правило, змеи – это всегда что-то нехорошее, это предвестники будущих неприятностей. Если снятся змеи, которые активно шевелятся и извиваются, то говорят о том, что ...
Снятся деньги обычно к хлопотам, связанным с самыми разными сферами жизни людей. При этом надо обращать внимание, что за деньги снятся – медные, золотые или бумажные...
Сонник Миллера обещает, что если во сне паук плетет паутину, то в доме все будет спокойно и мирно, а если просто снятся пауки, то надо более внимательно отнестись к своей работе, и тогда...
При выборе имени для ребенка необходимо обращать внимание на сочетание выбранного имени и отчества. Предлагаем вам несколько практических советов и рекомендаций.
Хорошее сочетание имени и фамилии играет заметную роль для формирования комфортного существования и счастливой судьбы каждого из нас. Как же его добиться?
Еще недавно многие полагали, что брак по расчету - это архаический пережиток прошлого. Тем не менее, этот вид брака благополучно существует и в наши дни.
Очевидно, что уход за собой необходим любой девушке и женщине в любом возрасте. Но в чем он должен заключаться? С чего начать?
Представляем вам примерный список процедур по уходу за собой в домашних условиях, который вы можете взять за основу и переделать непосредственно под себя.
Та-а-а-к… Повеселилась вчера на дружеской вечеринке… а сегодня из зеркала смотрит на меня незнакомая тётя: убедительные круги под глазами, синева, а первые морщинки
просто кричат о моём биологическом возрасте всем окружающим. Выход один – маскироваться!
Нанесение косметических масок для кожи - одна из самых популярных и эффективных процедур, заметно улучшающая состояние кожных покровов и позволяющая насытить кожу лица необходимыми витаминами. Приготовление масок занимает буквально несколько минут!
Каждая женщина в состоянии выглядеть исключительно стильно, тратя на обновление своего гардероба вполне посильные суммы. И добиться этого совсем несложно – достаточно следовать нескольким простым правилам.
С давних времен и до наших дней люди верят в магическую силу камней, в то, что энергия камня сможет защитить от опасности, поможет человеку быть здоровым и счастливым.
Для выбора амулета не очень важно, соответствует ли минерал нужному знаку Зодиака его владельца. Тут дело совершенно в другом.